Time-Optimal Control Problem for $n \times n$ Co-Operative Parabolic Systems with Strong Constraint Control in Initial Conditions

Byung Soo Lee, 1 Mohammed Shehata, 2 Salahuddin 3
1 Prof., Department of Mathematics, Kyungsung University, Korea
2 Assist. Prof., Department of Mathematics, Faculty of Science, Jazan University, Kingdom of Saudi Arabia
3 Assoc. Prof., Department of Mathematics, Faculty of Science, Jazan University, Kingdom of Saudi Arabia

ABSTRACT

In this communication we considered and studied the time-optimal control problem for a linear $n \times n$ co-operative parabolic system defined on a bounded open domain $\Omega \subseteq \mathbb{R}^n$ with a strong constraint control $u \in U \subset (H^1_0(\Omega))^n$. This problem is, steering an initial state $y(0) = u$ with a control u, so that an observation $y(t)$ hitting a given target set in minimum time. First, we proved the existence and uniqueness of a solution of system under assumptions of the coefficients and also discussed the necessary and sufficient conditions of optimality.

Keywords: Time-optimal control problems, bang-bang controls, parabolic system, $n \times n$ co-operative

1. INTRODUCTION

The timeoptimal control problem is plays an important role in the field of control theory. The general version is that steering the initial state y_0 in a Hilbert space H to hitting a target set $K \subset H$ in minimum time, with a control $u \in U \subset H$. In this communication our target is to highlight some special aspects of minimum time problems for $n \times n$ co-operative parabolic system involving Laplace operators with control acts in the initial conditions.

Let V and H be two real Hilbert spaces and V be a dense subspace of H. H' is a dual of H we may consider $V \subset H \subset V'$, where the embedding is dense. Let $A(t) \ (t \in [0,T])$ be a family of continuous operators associated with a bilinear form $\pi(t,\cdot,\cdot)$ defined on $V \times V$ satisfying the following Gårding’s inequality:

$$\pi(t; y, y) + c_0 \|y\|^2 \geq c_1 \|y\|^2, \quad c_0 \geq 0, c_1 > 0,$$

for $y \in V$, $t \in [0,T]$. (1)

It is known, from [9] and [10] that for a bounded linear operator B on H, the following abstract system;

$$\begin{aligned}
\frac{dy(t)}{dt} + A(t)y(t) &= f, f \in L^2(0,T;V'), \\
y(0) &= Bu
\end{aligned}$$

(2)

has a unique solution $y \in C([0,T];H)$ for $t \in [0,T]$. We shall denote by $y(t;u)$ the unique solution of the system (2) corresponding to the control u. The time-optimal control problem we shall concern reads:

$$\min \{\tau : y(\tau;u) \in K, u \in U\},$$

(3)

where K is a given subset of H, which is called the target set of the problem (3). A control u^0 is called a time-optimal control if $u^0 \in U$ and there exists a number $\tau^0 > 0$ such that $y(\tau^0;u^0) \in K$ and

$$\tau^0 = \min \{\tau : y(\tau;u) \in K, u \in U\}$$

(4)

where τ^0 denotes the optimal time for the time-optimal control problem (4).

Three questions (problems) arise basically in connection with this problem.

a) Exist there a control u and $\tau > 0$ such that $y(\tau;u) \in K$? (this is an approximate controllability problem).

b) Assume that the answer to a) is in the affirmative and

$$\tau^0 = \min \{\tau : y(\tau;u) \in K, u \in U\}.$$

Does there exist a control u^0 which steering $y(\tau^0)$ to hitting a target set K in minimum time?

c) If u^0 exists, is it unique? what additional properties does it have?
Let \(\Omega \subset \mathbb{R}^N \) be a bounded open domain with a smooth boundary \(\Gamma \), and set \(Q = \Omega \times]0,T[\) and \(\Sigma = \Gamma \times]0,T[\). From [3] and [9], the existence of time optimal controls of the following controlled linear parabolic equations with the distributed control \(u \) was obtained:

\[
\begin{align*}
\frac{\partial y}{\partial t} &= \Delta y + u \quad \text{in } Q, \\
y(x,0) &= y_0(x) \quad \text{in } \Omega, \\
y(x,t) &= 0 \quad \text{on } \Sigma,
\end{align*}
\]

(5)

Where \(y_0(x) \) is a given function in \(L^2(\Omega) \), \(u \in U \) and \(U \) is a closed bounded set in \(L^2(\Omega) \). The results in [3] partly overlap with the results in [9] and they were shown that if the system (5) is controllable and if \(K = \{0\} \) then the corresponding time-optimal control problem has at least one solution and it is bang-bang.

In [11], the authors gave a sufficient and necessary condition for the existence of the time-optimal control of the problem with the target set \(K = \{0\} \) and certain controlled systems. Consider the following controlled system:

\[
\begin{align*}
\frac{\partial y}{\partial t} &= \Delta y + ay + u \quad \text{in } Q, \\
y(x,0) &= y_0(x) \quad \text{in } \Omega, \\
y(x,t) &= 0 \quad \text{on } \Sigma,
\end{align*}
\]

(6)

Where \(a \) is a real number. Let \(\{\lambda_i\}_{i=1}^{\infty} \), \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \), be the eigenvalues of \(-\Delta \) with the Dirichlet boundary condition and \(\{e_i\}_{i=1}^{\infty} \) be the corresponding eigenfunctions, which is an orthogonal basis of \(L^2(\Omega) \). We consider the target set \(K \) to be the origin \(\{0\} \) in \(L^2(\Omega) \) and the control set \(U \) to be the set

\[U_\varepsilon = \{ u(\cdot, t) \in L^2(\Omega) : \| u \|_{L^2(\Omega)} \leq \varepsilon \} \]

Where \(\varepsilon \) is a positive number, namely, \(U_\varepsilon = B(0,\varepsilon) \), the closed ball in \(L^2(\Omega) \) centered at 0 and of radius \(\varepsilon \). It was proved that if \(K = \{0\} \) and \(U = U_\varepsilon \), then the corresponding time-optimal control problem has at least one solution if and only if \(a \leq \lambda_1 \).

Very recently the time-optimal controls system for globally controlled linear and semilinear parabolic equations was studied by [4], [6] and [8]. Latter on the optimal control of an infinite order hyperbolic equation with a control via initial conditions was considered by [7].

In 2013, Shehata [13] considered the time-optimal control problem for \(n \times n \) co-operative linear parabolic systems with a control \(u \in L^2(\Omega) \). Now we extend the Shehata [13] results to the case of strong constraint \(u \in H^1_0(\Omega) \).

Inspired by [1, 2, 12, 14], the time-optimal control problem of \(n \times n \) co-operative hyperbolic systems with different cases of the observation and distributed or boundary controls constraints was considered and proved the existence and uniqueness of solutions for \(n \times n \) co-operative parabolic system under conditions on the coefficients stated by the principal eigenvalue of the Laplace eigenvalue problem.

2. \(n \times n \) CO-OPERATIVE PARABOLIC SYSTEMS IN SOBOLEV

Let \(H^1_0(\Omega) \) be the usual Sobolev space of order one which consists of all \(\phi \in L^2(\Omega) \) whose distributional derivatives \(\frac{\partial \phi}{\partial x_i} \in L^2(\Omega) \) and \(\phi_t = 0 \) with the scalar product norm

\[< y, \phi >_{H^1_0(\Omega)} = < y, \phi >_{L^2(\Omega)} + < \nabla y, \nabla \phi >_{L^2(\Omega)}, \]

where \(\nabla = \sum_{k=1}^{N} \frac{\partial}{\partial x_k} \).

We have the following dense embedding chain

\[(H^1_0(\Omega))^n \subseteq (L^2(\Omega))^n \subseteq (H^1_0(\Omega))^n, \]

where \(H^1_0(\Omega) \) is the dual of \(H^1_0(\Omega) \).

Here and everywhere below the vectors are denoted by bold letters. For \(y = (y_{i_1})_{i_1=1}^{n}, \phi = (\phi_{i_1})_{i_1=1}^{n} \in (H^1_0(\Omega))^n \) and \(t \in]0,T[\), let us define a family of continuous bilinear forms\(\pi(t,\cdot): (H^1_0(\Omega))^n \times (H^1_0(\Omega))^n \rightarrow \mathbb{R} \) by
\[
\pi(t; y, \phi) = \sum_{i,j=1}^{n} \left[(\nabla y_i)(\nabla \phi_j) - a_i(x,t)y_i \phi_j \right] dx \\
- \sum_{i,j=1}^{n} a_{ij}(x,t) y_i \phi_j dx,
\]

(7)

where \(a_{ij}(x,t) \) and \(a_{ji}(x,t) \) are positive functions in \(L^\infty(Q) \), \(a_{ii} = 0 \) when \(i = j \) and

\[
a_{ij} \leq \sqrt{a_{ii}a_{jj}} \quad \text{when} \quad i \neq j
\]

The bilinear form (7) can be put in the operator form:

\[
\pi(t; y, \phi) = \sum_{i,j=1}^{n} \left[(\nabla y_i)(\nabla \phi_j) - a_i(x,t)y_i \phi_j \right] dx \\
- \sum_{i,j=1}^{n} a_{ij}(x,t) y_i \phi_j dx,
\]

(8)

Where \(A(t) \) is in \(n \times n \) matrix operator which maps \((H^1_0(\Omega))^n \) onto \((H^{-1}(\Omega))^n \) and takes the form

\[
A(t)y = \begin{pmatrix}
\Delta + a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & \Delta + a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & \Delta + a_{nn}
\end{pmatrix} \begin{pmatrix} y_1 \\
y_2 \\
\vdots \\
y_n
\end{pmatrix}
\]

Lemma 1:

[5] If \(\Omega \) is a regular bounded domain in \(\mathbb{R}^N \), with boundary \(\Gamma \), and if \(m \) is positive on \(\Omega \) and smooth enough (in particular \(m \in L^\infty(\Omega) \)), then the eigenvalue problem:

\[
-\Delta y = \lambda m(x)y \quad \text{in} \quad \Omega, \\
y = 0 \quad \text{on} \quad \Gamma
\]

possesses an infinite sequence of positive eigenvalues:

\[
0 < \lambda_1(m) < \lambda_2(m) \leq \cdots \lambda_k(m) \cdots ; \lambda_k(m) \to \infty, \quad k \to \infty.
\]

Moreover \(\lambda_i(m) \) is simple, its associate eigenfunction \(e_m \) is positive, and \(\lambda_i(m) \) is characterized by

\[
\lambda_i(m) \int_{\Omega} m y_i^2 dx \leq \int_{\Omega} |\nabla y_i|^2 \ dx
\]

(9)

Now, let

\[
\lambda_i(a_i) \geq n, \quad i = 1, 2, \ldots, n
\]

(10)

Lemma 2:

If (8) and (10) are hold, then (7) satisfies the Gårding inequality

\[
\pi(t; y, y) + c_0 \left\| \nabla y \right\|^2_{L^2(\Omega)^n} \geq c_1 \left\| y \right\|_{H_0^1(\Omega)^n}^2, \quad c_0, c_1 > 0
\]

Proof. In fact

\[
\pi(t; y, y) \\
- \sum_{i,j=1}^{n} a_{ij}(x,t) y_i y_j dx
\]

\[
\geq \sum_{i,j=1}^{n} \left[\lambda_i(a_i) - n \right] \int_{\Omega} |\nabla y_i|^2 \ dx
\]

From (10), we have

\[
\alpha \left[\sum_{i=1}^{n} \int_{\Omega} |\nabla y_i|^2 \ dx \right] \geq c_1 \left\| y \right\|_{H_0^1(\Omega)^n}^2
\]

Adding \(\left\| y \right\|_{L^2(\Omega)^n}^2 \) to two sides, then we get the desired result.
We can now apply the results of [10, p.33] to obtain the following theorem:

Theorem 1:
If (8) and (10) hold, then there exist a unique solution \(y \in H^{2,1}(\Omega) \cap H^1(0,T; L^2(\Omega))\) satisfying the following system:

\[
\frac{\partial y}{\partial t} = (A(t)y) + f_i, \quad f_i \in L^2(Q) \quad \text{in } Q, \\
y_i(x,0) = u_i(x), \quad u_i(x) \in H^0(\Omega) \quad \text{in } \Omega, \\
y_i(x,t) = 0 \quad \text{on } \Sigma.
\]

Moreover, \(y\) is continuous from \([0,T]\) to \((H^1_0(\Omega))^n\).

3. MINIMUM TIME AND CONTROLLABILITY IN SOBOLEV SPACE

We denote the unique solution of (11), at time \(t\) for each control \(u = (u_1, u_2, \ldots, u_n)\) by \(y(t; u)\) and we write \(y(x,t; u)\) when the explicit dependence on \(x\) if necessary. Now we define the time-optimal control problem corresponding to the co-operative parabolic system (11):

\[
\min \{t : y(t; u) \in K^a, u \in U^a\},
\]

with constraints

\[
\begin{align*}
y(t; u) & \text{ is the solution of (11),} \\
U^a & = \{u = (u_1, u_2, \ldots, u_n) \in (H^1_0(\Omega))^n : \\
& \|u_i\|_{H^1_0(\Omega)} \leq \varepsilon\}, \\
K^a & = \{z = (z_1, z_2, \ldots, z_n) \in (L^2(\Omega))^n : \\
& \|z - z_i\|_{L^2(\Omega)} + \sum_{j=1}^n \left\| \frac{\partial z_i}{\partial x_j} - z_{i,j} \right\|_{L^2(\Omega)} \leq \varepsilon\},
\end{align*}
\]

and \(\varepsilon, \varepsilon > 0\) and \(z_{i,j} \in L^2(\Omega)\) are given.

Theorem 2:
If (8) and (10) are hold then the system (11) is controllable.

i.e., there exists \(\tau \in [0,T]\) and \(u \in U^a\) with \(y(\tau; u) \in K^a\).

Proof:
We can reduce the problem of controllability to the case of the system (11) with \(f_i = 0\). Here \(y(\tau; u) \in (H^1_0(\Omega))^n\). To show the system is controllable let \(\psi(x) \in H^{-1}(\Omega)\) such that

\[
< \psi(x), y(x, \tau; u) > = 0 \quad \forall u \in (H^1_0(\Omega))^n,
\]

where \(<, >\) denotes the duality paring between \(H^{-1}(\Omega)\) and \(H^1_0(\Omega)\).

Let us introduce the adjoint state \(p(t; u)\) by the solution of the following system

\[
-\frac{\partial p}{\partial t} - (A'(t)p(t; u)) = 0 \quad \text{in } \Omega \times [0,\tau], \\
p_i(x,0) = \bar{z}_i(x) \in H^{-1}(\Omega) \quad \text{in } \Omega, \\
p_i(x,t) = 0 \quad \text{in } \Gamma \times [0,\tau],
\]

where \(A'(t)\) is the adjoint of \(A(t)\) which is defined by

\[
< A'(t)\phi, \psi > = < \phi, A(t)\psi >, \quad \phi, \psi \in (H^1_0(\Omega))^n.
\]

Since \(\bar{z}_i \in H^{-1}(\Omega)\), the existence of a unique weak solution \(p\) for (15) can be proved by the transposition (see Chapter 3 in [9]). Multiplying the first equation in (15) by \(y_i(t; u)\) and integrate by parts from 0 to \(\tau\), we obtain the following identity;

\[
\int_0^\tau \int p_i(x,t; u)u_i(x,t; u)dxdt \leq < \bar{z}_i(x), y_i(x, \tau; u) > = 0.
\]

But from the continuity property, \(p_i(\tau; u) \equiv 0\) and hence \(\bar{z}_i = 0\).

Now set

\[
\tau^0 = \inf \{\tau : y(\tau; u) \in K^a \text{ for some } u \in U^a\}.
\]

Then, the following result holds.

Theorem 3:
If (8) and (10) are hold, then there exists an admissible control \(u^0\) to the problem (12)-(16), which
steering \(y(t;u^0) \) to hit a target set \(K^n_e \) in minimum time \(\tau^0 \) (defined by (16)). Moreover

\[
\sum_{i=1}^n (I_{n} - \Delta)(y_i(\tau^0;u^0) - z_{id})
\]

(17)

Proof:

Fixe \(x \), we can choose \(\tau^m \to \tau^0 \) and admissible controls \(\{u^m\} \) such that

\[
y(\tau^m;u^m) \in K^n_e, \quad m = 1,2,\ldots
\]

Set \(y^m = y(u^m) \). Since \(U^n_e \) is bounded, we may verify that \(y^m \) ranges in a bounded set in

\[
(L^2(0,T;L^2(\Omega)^n)) = (L^2(Q)^n).
\]

Again We may extract a subsequence denoted by \(\{u^m, y^m\} \) such that

\[
\begin{align*}
&u^m \to u^0 \quad \text{weakly in} \quad (H^1(\Omega)^n) \quad (u^0 \in U^n_e), \\
y^m \to y \quad \text{weakly in} \quad L^2(0,T;H^1(\Omega)^n).
\end{align*}
\]

(18)

We deduce from the equality

\[
\frac{dy^m}{dt} = f - A(t)y^m
\]

that is

\[
\frac{dy^m}{dt} \to \frac{dy}{dt} = f - A(t)y \quad \text{in} \quad L^2(0,T;H^{-1}(\Omega)^n).
\]

And

\[
y^m(0) \to y(0) = u^0 \quad \text{in} \quad U^n_e.
\]

But

\[
y(\tau^m;u^m) - y(\tau^0;u^0) = y(\tau^m;u^m) - y(\tau^0;u^m) + y(\tau^0;u^m) - y(\tau^0;u^0)
\]

and

\[
\begin{align*}
\|y(\tau^m;u^m) - y(\tau^0;u^0)\|_{H^{-1}(\Omega)^n} &= \left\| \int_0^{\tau^m} \frac{d}{dt} y(t;u^m) \, dt \right\|_{H^{-1}(\Omega)^n} \\
&\leq \sqrt{\tau^m - \tau^0} \left(\int_0^{\tau^m} \left\| \frac{d}{dt} y(t;u^m) \right\|_{H^{-1}(\Omega)^n} \, dt \right)^{1/2} \\
&\leq c \sqrt{\tau^m - \tau^0}
\end{align*}
\]

(20)

Combining (19) and (20), we get

\[
y(\tau^m;u^m) - y(\tau^0;u^0) \to 0 \quad \text{weakly in} \quad (H^{-1}(\Omega))^n.
\]

(21)

Since \(y(\tau^0;u^0) \in K^n_e \) as \(K^n_e \) is closed and convex, hence weakly closed. This shows that \(K^n_e \) is reached in time \(\tau^0 \) by the admissible control \(u^0 \).

For the second part of the theorem, really, from Theorem 1, the mapping \(t \to y(t;u) \) from \([0,T] \to (H^1(\Omega)^n) \) is continuous for each fixed \(u \) and so \(y(\tau^0;u) \in \text{int} K^n_e \), for any \(u \in U^n_e \), by the minimality of \(\tau^0 \).

Using Theorem 1 it is easy to verify that the mapping \(u \to y(\tau^0;u) \), defined on \((H^1(\Omega)^n) \), is continuous and linear. then, the set

\[
A(\tau^0) = \{y(\tau^0;u) | u \in U^n_e\}
\]

is the image under a linear mapping of a convex set, hence

\[
A(\tau^0) \quad \text{is convex. Thus we have}
\]

\[
A(\tau^0) \cap \text{int} K^n_e = \emptyset
\]

and \(y(\tau^0;u^0) \in \partial K^n_e \) (the boundary of \(K^n_e \)). Since \(\text{int} K^n_e \neq \emptyset \) from (14) there exists a closed hyperplane separating \(A(\tau^0) \) and \(K^n_e \) containing \(y(\tau^0;u^0) \), i.e., there is a nonzero \(g \in (L^2(\Omega)^n)^* \) such as

\[
< g, y(\tau^0;u) > \leq < g, y(\tau^0;u^0) > \leq \inf_{y \in K^n_e} < g, y(\tau^0;u) >
\]

(22)
From the second inequality in (22), \(g \) must support the set \(K_\varepsilon^n \) at \(y(x_0^0; u) \) i.e.,
\[
< g, (y(x_0^0; u) - y(x_0^0; y^0)) > \geq 0 \quad \forall u \in U^n_\varepsilon
\]
and since \((H_0^1(\Omega))^n\) is a Hilbert space, \(g \) must be of the form
\[
g = \lambda (y(x_0^0; u^0) - z_{id}) \quad \text{forsome } \lambda > 0.
\]
Dividing the inequality (22) by \(\lambda \) gives the desired result.

Now the inequality (17) can be interpreted as follows: let us introduce the adjoint state \(y(t; u) \) by the solution of the following system
\[
\begin{align*}
\frac{\partial y_1}{\partial t} - \Delta y_1 &= a_{11}(x,t)y_1 + a_{12}(x,t)y_2 + f_1, \\
x \in \Omega, \quad t \in [0, \tau^0], \\
\frac{\partial y_2}{\partial t} - \Delta y_2 &= a_{21}(x,t)y_1 + a_{22}(x,t)y_2 + f_2, \\
x \in \Omega, \quad t \in [0, \tau^0], \\
y_1(x,0) &= u_1^0(x), \quad y_2(x,0) = u_2^0(x), \\
x \in \Omega, \quad t \in [0, \tau^0],
\end{align*}
\]
with \(a_1(x,t), i, j = 1,2 \) are positive functions in \(L^n(\Omega) \),
\[
\lambda_1(a_{11}) \geq 2, \quad \lambda_1(a_{22}) \geq 2.
\]
The state \(y = (y_1, y_2) \) is solution of the following equations
\[
\begin{align*}
\int_\Omega (I - \Delta)(y_1(x, \tau^0; u^0) - z_{id}) \\
(y_1(x, \tau^0; u) - y_1(x, \tau^0; u^0))dx \\
= \int_\Omega p_1(0; u^0)(u - u^0)dx.
\end{align*}
\]
Hence the inequality (17) becomes
\[
\sum_{j=1}^n p_j(x,0; u^0)(u - u^0)dx \geq 0 \quad \forall u \in U^n_\varepsilon.
\]

Using the controllability condition (14), we have that the backward uniqueness property implies \(p_j(x,0; u^0) = 0 \). Hence the optimal control is bang-bang, i.e., \(\| u^0_i \|_{L^2(\Omega)}^2 = \varepsilon \) and since \(U^n_\varepsilon \) is strictly convex, the optimal control is unique. We have thus proved:

Theorem 4:

If (8) and (10) are hold, then there exists the adjoint state \(p \in L^2(0, \tau^0; (L^2(\Omega))^n) \) such that the optimal control \(u^0 \) of problem (12)-(16) is bang-bang and unique, which is determined by (23) and (24) together with (11) (with \(u_i = u_i^0, i = 1,2,\ldots,n \)).

4. SCALAR CASE

Here, we take the case where \(n = 2 \), the time-optimal problem is
\[
\min \{ t : y(x,t; u) \in K^2_\varepsilon, \ u = (u_1, u_2) \in U^n_\varepsilon \}.
\]
The state \(y = (y_1, y_2) \) is solution of the following equations
\[
\begin{align*}
\frac{\partial y_1}{\partial t} - \Delta y_1 &= a_{11}(x,t)y_1 + a_{12}(x,t)y_2 + f_1, \\
x \in \Omega, \quad t \in [0, \tau^0], \\
\frac{\partial y_2}{\partial t} - \Delta y_2 &= a_{21}(x,t)y_1 + a_{22}(x,t)y_2 + f_2, \\
x \in \Omega, \quad t \in [0, \tau^0], \\
y_1(x,0) &= u_1^0(x), \quad y_2(x,0) = u_2^0(x), \\
x \in \Omega, \quad t \in [0, \tau^0],
\end{align*}
\]
with
\[
\begin{align*}
a_{11}(x,t), i, j = 1,2 \text{ are positive functions in } L^n(\Omega), \\
\lambda_1(a_{11}) \geq 2, \quad \lambda_1(a_{22}) \geq 2.
\end{align*}
\]
The adjoint is a solution of the following equations
\[
\begin{align*}
\int_\Omega (I - \Delta)(y_1(x, \tau^0; u^0) - z_{id}) \\
(y_1(x, \tau^0; u) - y_1(x, \tau^0; u^0))dx \\
= \int_\Omega p_1(0; u^0)(u - u^0)dx.
\end{align*}
\]
Hence the inequality (17) becomes
\[
\sum_{j=1}^n p_j(x,0; u^0)(u - u^0)dx \geq 0 \quad \forall u \in U^n_\varepsilon.
\]
\[
\int_0^1 \left[p_1(x,0; u^0_i)(u_i - u^0_i) + p_i(x,0; u^0_i)(u_i - u^0_i) \right] \, dxdt \geq 0 \quad \forall u \in U_c.
\]

5. COMMENTS

- In this communication we remark that if we have chosen to treat a special systems involving Laplace operator, most of the results we described without any change on the results, to more general parabolic systems involving the following second order operators:

\[L(x, \cdot) = \sum_{i,j=1}^n b_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^n b_j(x) \frac{\partial}{\partial x_j} + b_0(x, \cdot) \]

with sufficiently smooth coefficients (in particular, \(b_{ij}, b_j, b_0 \in L^\infty(Q), b_j, b_0 > 0 \)) and under the Legendre-Hadamard ellipticity condition

\[\sum_{i,j=1}^n \eta_i \eta_j \geq \sigma \sum_{i=1}^n \eta_i \quad \forall (x,t) \in Q, \]

for all \(\eta_i \in \mathbb{R} \) and some constant \(\sigma > 0 \).

In this case we replace the first eigenvalue of the Laplace operator by the first eigenvalue of the operator \(L \) (see [5]).

- If we have chosen to treat a co-operative parabolic systems with Dirichlet boundary conditions. The results can be extended to the case of \(n \times n \) co-operative parabolic system with Neumann boundary conditions: If we take \(H^1(\Omega) \) instead of \(H^1_0(\Omega) \), we have to replace the Dirichlet boundary conditions \(y_j = 0, p_i = 0 \) on the boundary by Neumann boundary conditions \(\frac{\partial y_j}{\partial V} = 0, \frac{\partial p_i}{\partial V} = 0 \) where \(V \) is the outward normal.

- The results in this paper, carry over to the fixed-time problem (Chapter 3 in [9])

\[
\text{minimize} \sum_{i=1}^n \int_{\Omega} \left| y_i(x, T; u) - z_{id}(x) \right|^2 \, dx, \quad T \text{ fixed},
\]

subject to (11) (except the trivial case, where \(z_{id}(x) = y_i(x, T; u) \forall i = 1, 2, \ldots, n \) for some admissible control \(u \)). This can be proven in an analogous manner, as the necessary and sufficient conditions for the optimality of this problem coincide with (11), (15) and (24) (with \(u_i = u^0_i, i = 1, 2, \ldots, n \)).

REFERENCES

