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Abstract—The present study deals with spatially homogeneous and anisotropic Bianchi-V I0 cosmological models representing
a cloud formed by massive strings in presence of electromagnetic field and bulk viscosity. To get a determinate model, we
assume that the expansion (θ) in the model is proportional to the shear (σ) and also the fluid obeys the barotropic equation
of state. The study reveals that massive strings dominate the early Universe evolving with deceleration and in later phase it
disappear from the universe, which is in good agreement with current astronomical observations. The behaviour of the models
from physical and geometrical aspects in presence and absence of magnetic field and bulk viscosity is discussed.
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I. INTRODUCTION

The explanation of the formation of large scale
structure of the universe is one of the basic problem
of cosmology even today. In literary production, the
widely used mechanisms for this structure formation are
the gravitational perturbations generated by topological
defects. Certain grand unified theories predict topological
defects to have formed in the early universe. According
to Big Bang theory, the universe cooled from an initial
hot, dense state triggering a series of phase transitions
much like what happens in condensed-matter systems.
In physical cosmology, a topological defect is an (often)
stable configuration of matter predicted by some theories
to form at phase transitions in the very early universe.
In recent years, there has been considerable interest in
string cosmology. Cosmoc strings are topological stable
objects, which might be found during phase transition
in the early universe [1]. These arise during the phase
transition after the big bang explosion as the temperature
goes down below some critical temperature as predicted
by grand unified theories (Zel’dovich et al. [2]; Kibble
[1], [3]; Everett [4]; Vilenkin [5], [6]). It is believed that
cosmic strings give rise to density perturbations which lead
to the formation of galaxies [7]. Massive closed loops of
strings serve as seeds for the formation of large structures
like galaxies and cluster of galaxies. While matter is
accreted onto loops, they oscillate violently and lose their
energy by gravitational radiation and therefore they shrink
and disappear. These cosmic strings have stress-energy
and couple to the gravitational field. Therefore it is
interesting to study the gravitational effects that arise
from strings. The pioneering work in the formulation of
the energy-momentum tensor for classical massive strings
was done by Letelier [8] who considered the massive
strings to be formed by geometric strings with particle
attached along its extension. Letelier [9] first used this

idea in obtaining cosmological solutions in Bianchi-I
and Kantowski-Sachs space-times. Stachel [10] has also
studied massive string. Pradhan et al. [11] and Yadav
et al. [12] endured inhomogeneous cosmological models
formed by geometric strings and used these models as a
source of gravitational fields. In recent past, several authors
[13−36] have meditated on cosmic strings in Bianchi type
space-times in different context of use.

The investigation of relativistic cosmological models
usually has the energy momentum tensor of matter
generated by a perfect fluid. To consider more realistic
models one must take into account the viscosity
mechanisms, which have already attracted the attention of
many researchers. Most studies in cosmology involve a
perfect fluid. Large entropy per baryon and the remarkable
degree of isotropy of the cosmic microwave background
radiation, suggest that we should analyze dissipative effects
in cosmology. Furthermore, there are several processes
which are expected to give rise to viscous effects. Bulk
viscosity is associated with the GUT phase transition and
string creation. In past, cosmological models have generally
been based on the presumption that the universe undergoes
an adiabatic expansion. However, since the discovery
of the 2.7oK radiation background, much attention has
been paid to the possible cosmological role of dissipative
processes. The role of viscosity has been discussed by
Weinberg [37]. A uniform cosmological model filled with
fluid which possesses pressure and second (bulk) viscosity
was developed by Murphy [38]. The solutions that he
found exhibit an interesting feature that the big bang type
singularity appears in the infinite past. These motivates
to study string cosmological models in presence of bulk
viscosity.

The occurrence of magnetic fields on galactic scale
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is well-established fact today, and their importance
for a variety of astrophysical phenomena is generally
acknowledged. Several authors (Zeldovich [39], Harrison
[40], Misner, Thorne and Wheeler [41], Asseo and Sol
[42], Pudritz and Silk [43], Kim, Tribble and Kronberg
[44], Perley and Taylor [45], Kronberg et al. [46], Wolfe et
al. [47], Kulsrud et al. [48] and Barrow [49]) have pointed
out the importance of magnetic field in different context.
As a natural consequences, we should include magnetic
fields in the energy-momentum tensor of the early universe.
The string cosmological models with a magnetic field are
also discussed by Benerjee et al. [50], Chakraborty &
Chakraborty [51], Tikekar & Patel ( [52], and Singh &
Singh [53].

Motivated by the above discussions, in this paper, we
have obtained some Bianchi type V I0 string cosmological
models in presence and absence of magnetic field and bulk
viscosity. This paper is organized as follows: The metric
and field equations are presented in Section 2. In Section
3, we deal with the solution of the field equations in
presence of viscous fluid and magnetic field. In Section 4,
we have described some geometric and physical behaviour
of the model. Section 5 includes the solution in absence
of magnetic field whereas in Section 6, we have given the
solution in absence of bulk viscosity. In the last section 7,
conclusions are given.

II. THE METRIC AND FIELD EQUATIONS

We consider the Bianchi Type V I0 metric in the form

ds2 = −dt2 +A2dx2 +B2e2xdy2 + C2e−2xdz2, (1)

where A, B and C are functions of t alone. The energy-
momentum tensor for a cloud of strings in presence of bulk
viscosity and magnetic field has the form

T ki = (ρ+p)uiu
k+pgki −λxixk−ζθ(gki +uiuk)+Eki , (2)

where Eki is the electromagnetic field, given by

Eki = FilF
kl − 1

4
FlmF

lmgki , (3)

and vi and xi satisfy conditions

uiui = −xixi = −1, uixi = 0. (4)

In equations (2), p is isotropic pressure, ρ is rest energy
density for a cloud strings, λ is the string tension density,
Fij is the components of electromagnetic field tensor, xi is
a unit space-like vector representing the direction of string,
and ui is the four velocity vector satisfying the relation

giju
iuj = −1. (5)

Here, the co-moving coordinates are taken to be u1 = 0 =
u2 = u3 and u4 = 1 and xi = ( 1

A , 0, 0, 0). The Maxwell’s
equations

Fij;k + Fjk;i + Fki;j = 0, (6)

F ik;k = 0, (7)

are satisfied by

F23 = K(say) = constant, (8)

where a semicolon (;) stands for covariant differentiation.

The Einstein’s field equations (with 8πG
c4 = 1)

Rji −
1

2
Rgji = −T

j
i , (9)

for the line-element(1) lead to the following system of
equations:

B̈

B
+
C̈

C
+
ḂĊ

BC
+

1

A2
= −

[
p− λ− ζθ − K2

2B2C2

]
, (10)

Ä

A
+
C̈

C
+
ȦĊ

AC
− 1

A2
= −

[
p− ζθ + K2

2B2C2

]
, (11)

Ä

A
+
B̈

B
+
ȦḂ

AB
− 1

A2
= −

[
p− ζθ + K2

2B2C2

]
, (12)

ȦḂ

AB
+
ḂĊ

BC
+
ĊȦ

CA
− 1

A2
=

[
ρ+

K2

2B2C2

]
, (13)

1

A

[
Ċ

C
− Ḃ

B

]
= 0. (14)

Here, and also in what follows, a dot indicates ordinary
differentiation with respect to t. The velocity field ui is
irrotational. The scalar expansion θ and components of shear
σij are given by

θ =
Ȧ

A
+
Ḃ

B
+
Ċ

C
, (15)

σ11 =
A2

3

[
2Ȧ

A
− Ḃ

B
− Ċ

C

]
, (16)

σ22 =
B2

3

[
2Ḃ

B
− Ȧ

A
− Ċ

C

]
, (17)

σ33 =
C2

3

[
2Ċ

C
− Ȧ

A
− Ḃ

B

]
, (18)

σ44 = 0. (19)

Therefore

σ2 =
1

3

[
Ȧ2

A2
+
Ḃ2

B2
+
Ċ2

C2
− ȦḂ

AB
− ḂĊ

BC
− ĊȦ

CA

]
. (20)

III. SOLUTIONS OF THE FIELD EQUATIONS

The field equations (10)−(14) are a system of five
equations with seven unknown parameters A, B, C, ρ, p, λ
and ζ. We need two additional conditions to obtain explicit
solutions of the system.

Equation (14) leads to

C = mB, (21)

where m is an integrating constant.

We first assume that the expansion (θ) is proportional to
shear (σ). This condition and Eq. (21) lead to

1√
3

(
Ȧ

A
− Ḃ

B

)
= `

(
Ȧ

A
+

2Ḃ

B

)
, (22)

which yields to
Ȧ

A
= n

Ḃ

B
, (23)
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where n = (2`
√
3+1)

(1−`
√
3)

and ` are constants. Eq. (23), after
integration, reduces to

A = κBn, (24)

where κ is a constant of integration. Eqs. (11) and (13) lead
to

p = ξ − K2

2B2C2
−

(
Ä

A
+
C̈

C
+
ȦĊ

AC
− 1

A2

)
, (25)

and

ρ =
ȦḂ

AB
+
ḂĊ

BC
+
ĊȦ

CA
− 1

A2
− K2

2B2C2
, (26)

respectively, where ζθ = ξ(say) = constant. Now let us
consider that the fluid obeys the barotropic equation of state

p = γρ, (27)

where γ(0 < γ < 1) is a constant. Eqs. (25)−(27) lead to,

Ä

A
+
C̈

C
+ (1 + γ)

ȦĊ

AC
+ γ

(
ȦḂ

AB
+
ḂĊ

BC

)
− (1 + γ)

1

A2
+

(1− γ) K2

2B2C2
− ξ = 0. (28)

Eq. (28) with the help of (21) and (24) reduces to

2B̈+
2(n2 + 2γn+ γ)

(n+ 1)

Ḃ2

B2
=

2(1 + γ)

κ2B2n−1+
(1− γ)K2

m2B3
−2ξB.

(29)
Let us consider Ḃ = f(B) and f ′ = df

dB . Hence Eq. (29)
reduces to the form

d

df
(f2) +

2α

B
f2 =

2(1 + γ)

κ2B2n−1 +
(1− γ)K2

m2B3
− 2ξB, (30)

where α = (n2+2nγ+γ)
(n+1) . Eq. (30) after integrating reduces

to

f2 =
2(1 + γ)B−2n+2

κ2(2α− 2n+ 2)
+

(1− γ)K2

2m2(α− 1)
− ξB2

(α+ 1)
+MB−2α, γ 6= 1.

(31)
To get deterministic solution in terms of cosmic string t, we
suppose M = 0. In this case Eq. (31) takes the form

f2 = aB−2(n−1) + bB−2 +NB2, (32)

where

a =
2(1 + γ)

κ2(2α− 2n+ 2)
, b =

(1− γ)K2

2m2(α− 1)
, N = − ξ

(α+ 1)
.

Therefore, we have

dB√
aB−2(n−1) + bB−2 +NB2

= dt. (33)

To get deterministic solution, we assume n = 2. In this case
integrating Eq. (33), we obtain

B2 =
√
(a+ b)

sinh (2
√
Nt)√

N
. (34)

Hence, we have

C2 = m2
√
(a+ b)

sinh (2
√
Nt)√

N
, (35)

A2 = κ2(a+ b)
sinh2 (2

√
Nt)

N
, (36)

where N > 0 without any loss of generality.

Therefore, the metric (1) in presence of magnetic field
and bulk viscosity, reduces to the form

ds2 = −dt2 + κ2(a+ b)
sinh2 (2

√
Nt)

N
dx2+

√
(a+ b)

sinh (2
√
Nt)√

N
e2x dy2+m2

√
(a+ b)

sinh (2
√
Nt)√

N
e−2x dz2.

(37)

IV. THE GEOMETRIC AND PHYSICAL SIGNIFICANCE OF
MODEL

The pressure (p), energy density (ρ), the string tension
density (λ), the particle density (ρp), the scalar of expansion
(θ), the shear tensor (σ) and the proper volume (V 3) for the
model (37) are given by

p =
N

(a+ b)

(
1

κ2
− K2

2m2

)
coth2 (2

√
Nt) +

N

(a+ b)

[
K2

2m
− 1

κ2
− 8(a+ b)

]
+ ξ, (38)

ρ =
N

(a+ b)

[
5(a+ b)− K2

2m2
− 1

κ2

]
coth2 (2

√
Nt) +

N

(a+ b)

(
K2

2m2
+

1

κ2

)
, (39)

where p = γρ is satisfied by (28).

λ =
N

(a+ b)

[
2

κ2
− K2

m2
− (a+ b)

]
coth2 (2

√
Nt) +

N

(a+ b)

{
K2

m2
− 2

κ2
− 4(a+ b)

}
, (40)

ρp = ρ−λ =
N

(a+ b)

[
K2

2m2
− 3

κ2
+ 6(a+ b)

]
coth2 (2

√
Nt) +

N

(a+ b)

{
3

κ2
− K2

2m2
+ 4(a+ b)

}
, (41)

θ = 4
√
N coth (2

√
Nt), (42)

σ =

√
N

3
coth (2

√
Nt), (43)

V 3 =
κm(a+ b)

N
sinh2 (2

√
Nt). (44)

From Eqs. (31) and (32), we obtain
σ

θ
= constant. (45)

The deceleration parameter is given by

q = − R̈/R

Ṙ2/R2
= −

[
8N
3 −

8N
9 coth2 (2

√
Nt)

16N
9 coth2 (2

√
Nt)

]
. (46)

From (46), we observe that

q < 0 if coth2 (2
√
Nt) < 3, (47)

and
q > 0 if coth2 (2

√
Nt) > 3. (48)

The sign of q indicates whether the model inflates or not.
The positive sign of q correspond to “standard” decelerating
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model whereas the negative sign of q indicates inflation.
It is remarkable to mention here that though the current
observations of SNe Ia and CMBR favour accelerating
models, but both do not altogether rule out the decelerating
ones which are also consistent with these observations (see,
Vishwakarma [54]).

From (39), ρ ≥ 0 implies that

coth2 (2
√
Nt) ≤

[ N
(a+b)

(
K2

2m2 + 1
κ2

)
N

(a+b)

{
K2

2m2 + 1
κ2 − 5(a+ b)

}]. (49)

Also from (41), ρp ≥ 0 implies that

coth2 (2
√
Nt) ≤

[ N
(a+b)

{
3
κ2 − K2

2m2 + 4(a+ b)
}

N
(a+b)

{
3
κ2 − K2

2m2 − 6(a+ b)
} ]. (50)

Thus the energy conditions ρ ≥ 0, ρp ≥ 0 are satisfied
under conditions given by (49) and (50).

The model (37) starts with a big bang at t = 0. The
expansion in the model decreases as time increases. The
proper volume of the model increases as time increases.
Since σ

θ = constant, hence the model does not approach
isotropy. There is a Point Type singularity (MacCallum [55])
in the model at t = 0. For the condition coth2 (2

√
Nt) < 3,

the solution gives accelerating model of the universe. It can
be easily seen that when coth2 (2

√
Nt) > 3, our solution

represents decelerating model of the universe.

V. SOLUTIONS IN ABSENCE OF MAGNETIC FIELD

In absence of magnetic field, i.e. when b→ 0 i.e. K → 0,
we obtain

B2 = 2
√
2
sinh (2

√
Nt)

2
√
N

, (51)

C2 = 2m2
√
a
sinh (2

√
Nt)

2
√
N

, (52)

A2 = 4aκ2
sinh2 (2

√
Nt)

4N
. (53)

Hence, in this case, the geometry of the universe (37)
reduces to

ds2 = −dt2 + 4κ2a
sinh2 (2

√
Nt)

4N
dx2+

2
√
2
sinh (2

√
Nt)

2
√
N

e2x dy2+2m2
√
a
sinh (2

√
Nt)

2
√
N

e−2x dz2.

(54)
The pressure (p), energy density (ρ), the string tension
density (λ), the particle density (ρp), the scalar of expansion
(θ), the shear tensor (σ) and the proper volume (V 3) for the
model (54) are given by

p =
N

aκ2
coth2 (2

√
Nt) + ξ −

(
1

aκ2
+ 8

)
N, (55)

ρ =

(
5N − N

aκ2

)
coth2 (2

√
Nt) +

N

aκ2
, (56)

λ =

[
2N

aκ2
−N

]
coth2 (2

√
Nt)−

{
2N

aκ2
+ 4N

}
, (57)

ρp = ρ−λ = 3N

(
2− 1

aκ2

)
coth2 (2

√
Nt)+N

(
3

aκ2
+ 4

)
,

(58)

θ = 4
√
N coth (2

√
Nt), (59)

σ =

√
N

3
coth (2

√
Nt), (60)

V 3 =
κma

N
sinh2 (2

√
Nt). (61)

From Eqs. (59) and (60), we obtain
σ

θ
= constant. (62)

From (56), ρ ≥ 0 implies that

coth2 (2
√
Nt) ≤

[
N
aκ2

N
aκ2 − 5N

]
. (63)

Also from (58), ρp ≥ 0 implies that

coth2 (2
√
Nt) ≤

[
3N
aκ2 + 4N
3N
aκ2 − 6N

]
. (64)

Thus the energy conditions ρ ≥ 0, ρp ≥ 0 are satisfied
under conditions given by (63) and (64).

The model (54) starts with a big bang at t = 0 and the
expansion in the model decreases as time increases. The
spatial volume of the model increases as time increases.
Since σ

θ = constant, hence the anisotropy is maintained
throughout. There is a Point Type singularity (MacCallum
[55]) in the model at t = 0.

VI. SOLUTION IN ABSENCE OF VISCOSITY

In absence of bulk viscosity i.e. when N → 0, then we
obtain

B2 = 2
√
at, (65)

C2 = 2m2
√
at, (66)

A2 = 4κ2at2. (67)

Hence, in this case, the geometry of the universe (54 reduces
to

ds2 = −dt2+4κ2at2 dx2+2
√
at e2x dy2+2

√
at e−2x dz2.

(68)
The pressure (p), energy density (ρ), the string tension
density (λ), the particle density (ρp), the scalar of expansion
(θ), the shear tensor (σ) and the proper volume (V 3) for the
model (68) are given by

p =
1

4aκ2t2
, (69)

ρ = − 1

4aκ2t2
, (70)

λ =

(
2

aκ2
− 1

)
1

t2
, (71)

ρp = ρ− λ = − 3

4aκ2t2
+

1

4t2
, (72)

θ =
2

t
, (73)

σ =
1

2
√
3

1

t
, (74)

V 3 = 4aκmt2. (75)
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From Eqs. (73) and (74), we obtain
σ

θ
= constant. (76)

It is observed that the energy conditions ρ ≥ 0, ρp ≥ 0
are satisfied if 0 < α < 1.

The model (68) in absence of magnetic field and bulk
viscosity, starts with a big bang at t = 0 and the expansion
in the model decreases as time increases. The spatial volume
of the model increases with time. The string tension λ
decreases with time . We also observe that λ > 0 if 2

a > κ2

and λ < 0 if 2
a < κ2. Since σ

θ = constant, hence the
anisotropy is maintained throughout. There is a Point Type
singularity (MacCallum [55]) in the model at t = 0.

VII. CONCLUSIONS

In this paper, we have obtained some new Bianchi
type V I0 massive string cosmological models with a bulk
viscous fluid as the source of matter in presence and
absence of magnetic field. In presence of bulk viscosity it
represents an accelerating universe during the span of time
mentioned below Eq. (45) as decelerating factor q < 0 and
it represents decelerating universe as q > 0. All the three
models obtained in the present study have a Point Type
singularity at t = 0. The energy conditions ρ ≥ 0, ρp ≥ 0
are satisfied under suitable choice of constants.

The models represent an expanding, accelerating,
sheering and non-rotating universe. We observe that σ

θ is
constant throughout in all three models. Hence the models
do not approach isotropy. It is also observed that the rate
of expansion of the universe is same in presence and
absence of magnetic field. The magnetic field does not
affect the behaviour of models but expressions for physical
parameters are different whereas kinematics parameters are
unchanged. The idea of primordial magnetism is appealing
because it can potentially explain all the large-scale fields
seen in the universe today, specially those found in remote
proto-galaxies. As a result, the literature contains many
studies examining the role and the implications of magnetic
fields for cosmology.

The strings dominate in the early universe and eventually
disappear from the universe for sufficiently large times. At
early universe, the possible occupation of cosmic strings
is not allowed to exceed over 10% due to constraints
of latest CMB data. At late time evolution, the strings
become negligible even then still play an important role in
astronomical experiments. The models present the dynamics
of strings in the accelerating and decelerating modes of
evolution of the universe. The effect of bulk viscosity is to
produce a change in perfect fluid and hence exhibit essential
influence on the character of the solution. We observe here
that Murphyâs conclusion [38] about the absence of a big
bang type singularity in the infinite past in models with bulk
viscous fluid is, in general, not true. The results obtained in
Ref. [56] also show that, it is, in general, not valid, since
for some cases big bang singularity occurs in finite past.
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